
Final Product Report
8 May 2020
Version 1

Sponsors
Dr. Kiona Ogle
Dr. Michael Fell

Mentor
Isaac Shaffer

TreeViz
Riley McWilliams

Qi Han
Haitian Tang

Daniel Rustrum
Alex Bentley

Contents

1 - Introduction 3

2 - Process Overview 6

3 - Requirements 7
3.1 Functional Requirement 7
3.2 Non-functional Requirement 7

4 - Architecture and Implementation 8

5 - Testing 10

6 - Project Timeline 11

7 - Future Work 12

8 - Conclusion 13

9- Glossary 14

10 - Appendix A 14
10.1 - Hardware 14

Website 14
Model Wrapper 15
Visualization 15
Minimum Specifications 15

10.2 - Toolchain 15
10.2.1 - Website 16
10.2.2 - Visualization 16
10.2.3 - Server 16
10.2.4 - Database 16
10.2.4 - Wrapper 17

10.3 - Setup 17
10.3.2 Local Website Setup 17
10.3.1 ACGCA Model Wrapper Setup 19

10.4 - Production Cycle 20
10.4.1 - Edit 20
10.4.2 - Build 23

1 - Introduction

1.1 Background
Climate change is a natural cycle of the Earth that impacts many ecosystems. However, due to the recent
and rapid growth in industrialism, climate change is now being more affected by artificial causes than
natural ones. A severe increase in the amount of carbon dioxide (CO2) emitted into the atmosphere by
human-made technology is dangerously speeding up the effects of climate change on the planet.

Trees play an extremely important role in Earth’s climate behavior. They cover around 50% of Earth’s
land area and contain upwards of 90% of the global vegetation carbon. This means that a lot of CO2 that
humans emit is being taken in by trees and used for their growth. Observing tree growth patterns can lead
to a better understanding of how trees and climate interact with each other. These observations can also be
used to predict the effects of climate change in the future.

To better understand how certain factors affect trees, Dr. Kiona Ogle and Dr. Michael Fell of Ogle Labs
developed a simulation that shows a tree’s growth over time. The simulation is called the Allometrically
Constrained Growth and Carbon Allocation (ACGCA) model. It uses over 30 input parameters to run the
simulation, which calculates the state of the tree over time. The output of the model contains useful
information such as the tree’s height, trunk radius, the carbon in the leaves and trunk, etc. The model was
purely used for research by Dr. Ogle, Dr. Fell, and Ogle lab associates, and is not being used for profit.
However, they wanted to expand the use of the model to anyone with an internet connection, for free,
allowing everyday people to learn about tree growth from it.

1.2 Problem
The issue was that the ACGCA model had a very small user base. This means that very few people were
using the model to learn about tree growth. The specific problems that the model has are as follows.

● Not available online
The ACGCA model was not available online. This limited the use to only those acquainted with
Dr. Ogle or Dr. Fell.

● Unfriendly user input

The model’s input was command line based, which required the user to have programming
experience to run it.

● Required knowledge in biology

The user needed to know what each of the 30+ input parameters are, which requires experience in
tree biology.

● Unfriendly output
The model only outputs raw numerical data, which can be useful for biologists, but no one else. It
was not visually appealing nor informative to non-researchers.

● User information

Our clients wanted a way to keep track of what kind of people are using their model. They wanted
to know information about the user such as if they are a student, teacher, researcher, etc and their
general location.

● Low budget

Our clients did not have a grant for this project and had to pay for everything themselves.

The combination of these factors created a user environment that was unfriendly and required knowledge
in specific fields. The fact that the model was not available online also contributed heavily to its low
usage.

1.3 Solution
Dr. Ogle and Dr. Fell wanted to expand their audience so that anyone can utilize and learn from the
ACGCA model. More specifically, they envisioned the model being used in a classroom setting where
students can experiment with the inputs. This way, students can learn how certain factors affect tree
growth. While students are the primary demographic of focus, researchers were also considered during
development as the original demographic of the model.

Our clients also wanted a way to track how the model is being used. They were interested in knowing if
more students versus researchers versus everyday people are using it. They were also interested in the
general location of the users. While mandatory, this information is only used for analytical purposes and
does not infringe on anyone's privacy.

Team TreeViz was tasked with making the model more user-friendly. To do this, we created a website
that is hosted online for anyone to use. The website runs the model and significantly increases the
accessibility to it by overhauling the input and output. Specific features that solved the project’s problems
are as follows.

● Available online

The website is hosted online so that anyone with internet access can use it. A wrapper and
handles the passing of inputs and outputs of the model between the user and a server.

● User-friendly input

The 30+ input parameters were converted to text boxes and sliders instead of a command line.
This allows anyone to use it, rather than only researchers.

● Help boxes
Each parameter on the input page has a help box that explains the parameter in more detail. This
allows non-biologists to get a better understanding of what they do.

● Tree visualization

The output is a rendered tree visualization. This is significantly more intuitive than the raw data
and allows many more users to learn from the model. The raw data is also available to those who
wish to use it.

● User surveys

Users will submit a survey with some basic information so that our clients can see how the model
is being used. This helps our clients develop the product further, allowing the prioritization of
certain user demographics for future updates.

● Local desktop development

To avoid costly solutions to our clients, the biggest change we made was developing the wrapper
to be used on a local server, rather than hosting it online with the website.

With this solution, we provided our clients the means to broaden their audience. Now more people can
use the ACGCA model to learn about tree growth. The website may be used in labs for researchers to
conduct experiments and study climate change. It could also be used in a classroom where students are
learning together about how trees grow..

1.4 Purpose of this Document
The purpose of this document is to efficiently get future developers for this project up to speed. It details
all of the components necessary for understanding how to effectively develop this project further.
Appendix A includes critical information on exactly how TreeViz initially developed the project, with
what tools, and how to install everything you need to jump right into development.

2 - Process Overview
In our development process, we used the weekly task report to keep track of all of the tasks that we
needed to do for the upcoming week and the tasks that have been completed during the past week. Every
week we met with our mentor once to check if our task report is appropriate or not. We had group
meetings two times a week on average to talk about some ideas about current tasks and future tasks. We
also used the group meetings to do some group coding so that when we had difficulty we could help each
other. We used a google doc to keep track of the meeting content so that when we forget something about
the meeting we can go back and check. We used Github and the Github Desktop application for version
control. We pushed our changes to it when we made sure that the current version of the local project can
run properly. The benefit of using it is that when something in the project went wrong we could quickly
find where it was wrong and revert the changes.

The process that we used for our development is similar to the waterfall method. We decided how we
were going to complete the project during the first semester and planned very carefully. In the second
semester, we kept developing the project as we planned. During the development process, we kept in
touch with our clients, meeting every week. We showed our project progress to them to get suggestions
and feedback. We keep improving our product in order to satisfy our clients’ requirements.

The roles in the team are quite clear. Riley was the team leader and the coder for the tree visualization.
Alex took the role of the recorder and worked on the database, model wrapper, and web interface. Daniel
designed the structure of the project in the first semester and mainly worked on the Amazon Web server
in the latter half of the developing process. Tang was the backend coder who mainly helped Alex on the
model wrapper. Han was the frontend coder of the project. He mainly took care of the web pages to make
sure everything on the frontend web pages looks fine and works well.

3 - Requirements
Our clients’ requirements were divided into functional and non-functional requirements.

3.1 Functional Requirement

3.1.1 Web Application Functional Requirement
The product must be a web application that provides different ways for users to input data to the ACGCA
model and get the results. These requirements include the functions that will give users access to the
functionality of the model. They also include functions that will give the user a better experience when
interacting with the model.

3.1.2 Survey Functional Requirement
Survey requirements are the requirements that pertain to the mandatory surveys that users need to fill out
to gain access to the visualization. The surveys are necessary because our client would like to be able to
gather data on who uses the model and why. They would also like to know how often people use the
model and their affiliation, i.e., students, teachers, independent users, etc.

3.1.3 Maintenance Functional Requirement
Maintenance requirements are the functions the product needs in order to be easily maintainable in the
future. Implementing these requirements will allow future developers to continue the project with
minimal resistance.

3.2 Non-functional Requirement

3.2.1 Internet Accessible
Our clients want their product to be accessible for school students or researchers from different places all
over the world. Thus, our product needs to be available online.

4 - Architecture and Implementation
This section will only be referencing, Figure 1, below. There are four independent systems that
communicate with each other and each system has their own completely different functions that
contribute to the overall program. These systems are connected over a network connection and
communicate via ReST API calls. The four systems are the website, Amazon Web Server (AWS),
Firebase, and the ACGCA wrapper. A very broad understanding of the interactions between systems is
that the website communicates with AWS and Firebase; the ACGCA wrapper interacts with AWS; and
AWS serves as a connection between the Website and ACGCA wrapper. As we dive deeper into the
details of the individual systems, the broader picture will also be clearer.

The website is the system that the user interacts with. It provides the user with a more understandable
Graphical User Interface. Starting from the first component, authentication, the user can log in, which
uses the authentication services from Firebase, and validates if the user has an account or not. If the user
authentication succeeds, then the user is redirected to the visualization page. However, if the
authentication fails, then the user can either try again or create a new account. Once the user creates a new
account they are routed to the survey page, which they have to complete, before being redirected to the
visualization page.

Once on the visualization page, the user fills out form elements. Once they are filled out and the user hits
run, the inputs are formatted into a JSON object and sent to AWS to be processed. When an input is sent
to AWS, the website gets a unique ID for requesting the output. The website queries the ReST API on
AWS to get the respective output from the ACGCA model. If an empty JSON object is sent back, then
then the website waits for a period of time then queries again.

When the website receives the output, it is displayed as a visualization for the user. There are a few
options for the user to choose from for how they wish to see the data: a 3D tree model, a visualization of
the tree rings, and the raw numerical data.

Firebase is used to store information from the survey and login. As a result of this, the architecture is very
simple and concise, containing only two components. Those components being a Survey Database and
User Authenticator. The Survey Database allows administrators to review stored user surveys. The User
Authenticator provides the means to validate users for login.

AWS has two main roles: host the website, and provide a means to connect users to an instance of the
ACGCA wrapper. Starting with the hosting role, when a user goes to acgca.org (the domain name for the
website) the Domain Name Server (DNS) on AWS will direct the user to an S3 bucket which stores the
static website. The static website is then served to the users’ web browser and to be rendered.

There is a ReST API hosted and built within AWS that passes data between the user’s browser and the
ACGCA wrapper. When the user sends an input to the API, a Run ID is generated which acts as a unique

ID for that instance of running the model. This Run ID is passed to both the user’s browser and into the
input queue with its correlating input that it was generated for. The ACGCA wrapper requests the ReST
API for an input to be processed; the API will send the inputs as well as the Run ID. If there are no inputs
in the Input Queue then an empty JSON object is sent instead.

Once an output is created, it is sent back to the ReST API along with the Run ID. The Output is then sent
to DynamoDB, a collection, as a key-value pair. The key being a Run ID and the value being the output.
When the user’s browser requests the output using the Run ID, it will check DynamoDB if a key with a
strictly equivalent value exists. If the key doesn’t exist, it will give back an empty JSON object. However,
if it does exist, it gives back the output which is the value that correlates with the key.

The ACGCA wrapper wraps the ACGCA model and provides extra functionality to the model such as get
and post requests and data serialization. How the ACGCA wrapper works, is that it is an endless loop of
grabbing inputs, processing those inputs into outputs, then sending the outputs back to the ReST API.
After the wrapper gets the input, it serializes the data. This means it converts the json data that the API
sends, into data that the ACGCA model can run. However, if the wrapper receives an empty JSON object
it will wait a predetermined amount of time before trying to get more input. The outputs are also
serialized into something that the ReST API can work with.

Overall, as the user progresses through the website, network calls to external services are made and data is
passed to and from those services. An important part and core to this project, architecturally, is that the
input data is able to be passed into the model without eachother even knowing the existence of the other.

Figure 1: Architecture Diagram

5 - Testing
This section details our testing strategy and results. We focused on usability testing as this program is
designed for use by the everyday person.

For usability testing, we created a Google form that had users perform 2 tests:

Test 1 -

The first test asked the users to follow the link to the website and attempt to visualize a tree with no
further instruction. We asked them to rate how long they were on each page for and how difficult it
was to figure out how to use each page. Then we asked them for any feedback that they can think of
so far.

Test 2 -

The second test asked the users to follow step-by-step instructions to navigate through the website. If
they got stuck during the first test, then this test would make sure they got to the end goal of
visualizing a tree. Then users were asked to write their thoughts about each page and suggestions they
have.

From these tests, we gathered that the sign-up and survey pages are very user-friendly. However, the
visualization page needs some work. The biggest issue was the testers wanted visual feedback from the
website that the model is running in the background, rather than a still page. Testers also asked for more
default tree sets. Another problem was that when users refreshed the visualization page, it redirected them
back to the login page, which was troublesome for many testers.

6 - Project Timeline
We divided our timeline into two parts: spring semester, fall semester.

Fall Semester
During the fall semester, as shown in Figure 2, we focused on discussing requirements with our clients to
get a better understanding of what they need. We finished technological feasibility research and
requirements specification.

Figure 2: Fall Semester

Spring Semester
During the spring semester, as shown in Figure 3, we finished our basic product and ran the alpha
prototype the week before spring break. After spring break, we focused on adding details to our product
including website and tree visualization improvement. At the beginning of May, we delivered our final
product to our clients.

Figure 3: Spring Semester

7 - Future Work
The product that we have left the client has a lot of potential future for development. There are still many
things that could be implemented within the system to work more for the client. The team was able to
complete all of the required specifications from the client, so work will not need to focus on the primary
functions of the product.

Future Goals
Some of the goals that could be implemented revolve around refinement of the webpage because the
development team spent most of the time of the initial development cycle to build a low-cost and efficient
backend for the product. Some updates that could be made to the website include:

● Better visualization that is more detailed
● Real time updates to the inputs and the outputs of the model
● Include a FAQ for the operation of the visualization software
● More detailed .csv file that is downloaded from the outputs of the model
● A loading icon that lets the user that the website is waiting for a response from AWS
● More detailed help boxes for the model’s input
● Arrows to indicate that menus can be opened with a click
● Rerunning the visualization without reloading the webpage
● Allow the light variable to change over time

The only thing that proved to be a problem with the back-end of the system is that AWS’s DynamoDB
has a limit for the amount of data that can be stored within a single call. This means that the amount of
data that can be sent at a given time is severely limited, and the amount of time in years that can be run
maxes out at 450, which is not ideal for this type of model. To fix this, multiple messages need to be sent
from the model and retrieved from the website to break up the large data package, or the size of the
database on AWS needs to be increased.

8 - Conclusion
Climate change has been drastically increasing in speed in recent years. Trees play an important role in it
by containing the majority of global vegetation carbon. To better understand how tree growth is affected
by various factors, our clients, Dr. Kiona Ogle and Dr. Michael Fell, developed a simulation that
calculates the growth of a tree over time: the ACGCA model. However, the model was only used by
researchers in their lab because it was not available online and not very user-friendly. Dr. Ogle and Dr.
Fell hope to expand its use to everyday people by making it more user-friendly and available online.

TreeViz worked for a year to lay the foundation of this project, gathering the requirements, designing an
architecture, and implementing the plan into code, leaving our clients with a functioning alpha prototype.
We developed an online, user-friendly web application that will allow the everyday person to learn about
tree growth from their model. Some specific features include:

● Hosted online for anyone to use.
● User-friendly control panel that replaces the command-line based input.
● 3-dimensional rendered tree of the output of the model, providing a more intuitive way to see how

the inputs may affect the growth of a tree.

With their user-friendly platform for visualizing tree growth, Dr. Ogle and Dr. Fell can expand their
audience from just a few researchers in their lab to any of the millions of people in the world that are
interested in tree growth. With this product, hopefully more people can become educated on tree growth
and, in turn, seek out to learn more about climate change. Researchers may also use this product to study
tree growth and its effect on the climate.

TreeViz was glad to have worked on this project for so long, and are proud of what we built for our
clients.

9- Glossary
ACGCA - Allometrically Constrained Growth and Carbon Allocation mode. The model built by our
clients to simulate the growth of trees over time.

ReST API - Representational State Transfer Application Programming Interface. A system used to send
and receive data between components of a system.

AWS - Amazon Web Services.

DynamoDB - A fully managed NoSQL database managed by Amazon.

API - Application Programming Interface.

DNS - Domain Name System. Used to create a URL that is easy to navigate to and is of our choosing
(e.g. acgca.org)

Firebase - Mobile and web application development platform developed by Google.

10 - Appendix A

10.1 - Hardware
The hardware that the team used for development was a combination of Windows and macOS
environments. The development team eash used their personal computers for development. A
combination of development environments was essential for the development team to learn the
differences between machines when developing. The machines that were used for the development of
each part of the system are as follows:

Website
All team members had a hand in developing the website so everyone’s machine was used; 4 Windows
machines and 2 macOS machines. Each individual’s machines had different hardware specifications with
1 machine using an AMD CPU and every other machine using an Intel CPU. The work that the
development team did was mainly CPU intensive tasks. There were three dual core processors and three
quad core processors, which proved to be more than enough processing power for development.

Model Wrapper
The wrapper that was created for the client’s model was developed primarily on a macOS machine with a
quad core 2.5 GHz i7 with 16 GB of RAM.

Visualization
The visualization for the website was developed on a Windows machine that had a quad core 2.8 GHz i7
with 16GB of RAM.

Minimum Specifications
The minimum hardware specifications for the further development of the entire system are very low.
VueJS requires Node.js version 8.9 or higher which only requires a 64 bit architecture. To run the
wrapper for the model, the operating system should be Unix based, which includes Linux builds as well as
macOS, and should be running Python 2. The minimum requirements for the further development of the
product are relative to the type of development to be done. If development for the product requires more
processing power, then the minimum requirements will be much higher, but for the software that we have
used for the initial development, the requirements are low.

10.2 - Toolchain
This section details all of the software tools that we used to develop the project.

For version control, we used GitHub Desktop at https://desktop.github.com/. This application makes it
easier to commit/push/pull/merge changes when working on the project.

For our package manager, we used Node.js. This allowed us to easily download all the necessary tools
without having to push them to GitHub. The package.json file was the only file that was pushed to
GitHub, which contains all the information on which tools we used.

To use Node.js, simply install it at https://nodejs.org/en/. Then go to the root directory of the project and
type “npm install”. This will install all of the tools we used as saved in the package.json file. If you wish
to download more tools, type “npm install tool-name” and it will download it on your machine and add it
to the list of dependencies in the package.json file. Make sure to push the updated package.json to GitHub
so that other developers have the updated dependency. The repository will ignore the dependency itself to
save space, but all they have to do is type “npm install” to download any new dependencies listed in the
package.json file.

https://desktop.github.com/
https://nodejs.org/en/

10.2.1 - Website
For the website we use Vue.js to complete the project.
Link: https://vuejs.org/index.html

Vue.js - An open-source JavaScript framework that was developed by Evan You, who was an old Angular
team member. The goal of Vue.js was to create a new framework that combined the best approaches to
front-end web development

10.2.2 - Visualization
For the visualization, we used Three.js, which is embedded in Vue.js on the website.
Link: https://threejs.org/

Three.js - A 3D graphics framework for JavaScript. It allowed us to render 3D trees and 2D rings based
on the model’s output, quickly giving users a visualization of the tree that was simulated from their
inputs.

10.2.3 - Server
For the server, we used AWS, which hosts the website and provides communication between the ACGCA
Instance and the User.
Link: https://aws.amazon.com/

AWS - A cloud service platform by amazon. It allowed us to host the website on it, have a DNS server for
that website, and be able to pass data to and from the ACGCA instance, just by connecting the services
they offer together.

10.2.4 - Database
For the database to store the user information, we used Google Firebase which allows an environment for
the client to navigate easily as well as provide easy storage from the website.
Link: https://firebase.google.com/

Real Time Database - Firebase’s real time database is a fast and responsive database that was used to
store the survey information that the user supplies before they can access the visualization. The built in
methods that are included in the firebase package made development easy as well as provides an
environment for analysis and support from Google.

https://vuejs.org/index.html
https://threejs.org/
https://aws.amazon.com/
https://firebase.google.com/

10.2.4 - Wrapper
For the Wrapper, we used python and requests, which wraps the ACGCA instance allowing us to request
and send data, run the model, and to serialize and format the data passed.
Links: https://www.python.org/, https://requests.readthedocs.io/en/master/

Python - A general purpose programming language. We used it to format and serialize the data; it also
allowed us to call the ACGCA model which is written in C.

Requests - A module for python. It allowed us to call the server to get input data and send output data.

10.3 - Setup
There are two things that need to be done to start development on the project: run the ACGCA model
wrapper, and run the website. The steps for setting up both of these are as follows.

10.3.2 Local Website Setup
1. Go to the GitHub repository and download it. https://github.com/Rho-mu/capstone19-20

2. Extract the downloaded folder to a directory of your choosing.

3. Navigate to the new location of the capstone19-10 folder with the command line.

4. Type “cd capstone” to navigate to the capstone folder.

https://www.python.org/
https://requests.readthedocs.io/en/master/
https://github.com/Rho-mu/capstone19-20

5. Type “npm install” to install all dependencies. Note that this only has to be redone when a new
dependency is installed. For example: if you want to use a framework called test.js, you would type
“npm install test.js” to install it. It will automatically update the package.json file so that when another
developer types npm install, test.js will also be installed.

6. Once it’s done installing, type “npm run dev” to run a development server. If nothing went wrong, you

should be able to go to http://localhost:8080 and view the project website.

7. Now that you have the website up and running, it’s time to set up the development environment. Open

your text editor of choice and navigate to the project folder. This screenshot shows VSCode, but any
text editor will do.

8. Start coding! Any changes you save will automatically be updated on the website without needing to

be refreshed. This is one of the benefits of using Vue.js.

http://localhost:8080/

10.3.1 ACGCA Model Wrapper Setup
There are a couple things to consider before setting up the model wrapper.

● Am I working on just the website?

If you are only working on the website and there is already an instance of the model running
somewhere, then there is no need to set up the model on your local machine.

● Am I working on the wrapper/ACGCA model code?

If you are working on the wrapper or ACGCA model, then you may want to have debug/log
statements print to the terminal. In this case, other instances of the model besides your own can
intercept your inputs, and you will not be able to see your log statements. The only way around
this is to have the only running instance of the model on your machine. This guarantees that all
inputs will be picked up by your instance of the model.

Considering those two things, here are the steps for setting up an instance of the model wrapper:

1. Download the ACGCA_Instance folder from the Github repository. If you have already downloaded

the whole repository then you can skip this step.

2. Go to the ACGCA_Instance directory in the command line and type in the following command to

enter the src folder. “cd Model/ACGCA/src”

3. Open makefile.mk at “ACGCA_Instance/Model/ACGCA/src” and check if you have ACGCA.dll or

ACGCA.so. If you are on Windows, you should have ACGCa.dll. If you are on Mac/Linux, you
should have ACCGA.so. If you have the wrong ACGCA type in your makefile.mk, simply change all
instances of ACGCA.xx to the one you need. The screenshot below shows all three instances.

4. Once you have the correct ACGCA.xx, type “make -f makefile.mk” in the command line to compile

the ACGCA model into a dll/so. If you are on Windows, you will need to use a C compiler to run this
command, such as MinGW (http://www.mingw.org/).

http://www.mingw.org/

5. Open run.py in “ACGCA_Instance/Model/ACGCA/src” and change the line shown in the screenshot
below to your path to ACGCA.dll/ACGCA.so.

This line links the wrapper with the compiled model.

6. Now you should be able to run an instance of the ACGCA model. Type “python run.py” to run the

instance. You can do this on multiple terminals to run multiple instances. You will need Python
installed for this part (https://www.python.org/downloads/).

10.4 - Production Cycle
The production cycle starts with having everything setup as detailed in section 10.3. To update the
project, you need to edit the code, check the website to make sure there are no errors, and create a build
version to upload to AWS. To explain this, we will be going through a specific example of changing how
the tree rings are displayed.

10.4.1 - Edit
As you can see from the screenshots below, the size of the tree rings visualization changes depending on
the current radius of the tree. This means that whether you have a small radius or a large radius, the size
of the full circle stays the same. We want to change this so that the scene scales with the maximum radius
of the tree such that the rings stay the same size instead of scaling to fill the scene.

https://www.python.org/downloads/

Here are the steps to make this change:

1. First, we need to find the code that scales the scene based on the current radius. The way the scene

scales is by moving the camera further back.

2. We will replace this line of code with new code that gets the radius of the final ring and scales the

scene to that instead.

3. After changing the code and saving the file, we check the website and the browser’s console for

errors. As you can see from the screenshot, it seems that there is a typo in the new code that we wrote.
On line 1310, maxadius should be maxRadius.

4. So, we go back and fix this and check the website again to make sure everything’s working.

The screenshots below show that the new code works and is making the tree rings appear to grow
outward.

5. Now that the change has been made and the code is working, we need to commit the change to the

repository and push it to GitHub.

6. That ends the process for editing code. The next section details how to create a build version of the

website and push it to AWS.

10.4.2 - Build
In order to build the product for development there is only one command that needs to be run. Within the
same directory where the webpage files are located (capstone19-20/capstone/src) run the following
command in your terminal, “npm run build”. The result should resemble the screenshot below.

Once the build is complete, we will upload the files to AWS. Navigate to
https://s3.console.aws.amazon.com/s3/home?region=us-east-2#, and open the S3 bucket that says
“acgca.org”. Once there click the button that says “Upload”. Once redirected there will be a page that
allows you to drag and drop files in. The files will be located within the directory where we ran “npm run
build”, which contains the necessary files for the web page. The S3 bucket that we have navigated to will
show the files listed in the screenshot below.

We will find these same files inside the “dist” folder within the “src” directory for the web page. We need
to take our new “static” and “index.html” from our new build and replace them in AWS. Once the files
have been uploaded they will be viewable under the “acgca.org” URL.

https://s3.console.aws.amazon.com/s3/home?region=us-east-2#

